Nucleon Elastic Form Factors: An Experimentalist's Perspective

Glen Warren

Battelle & Jefferson Lab

Division of Nuclear Physics October 31, 2003

Outline:

- The Fib and the Questions
 - EM FF
 - Strangeness

First, I'm going to fib

- This mini-symposium is titled "Progress in Nucleon Form Factors".
- To recognize the "progress" we must know from where we came.
- I will first present the classic introduction to nucleon form factors. It would have raised few eyebrows even as little as 5 years ago.
- Listen, learn if you need to, but do not think this is the whole truth.

Form Factors

Structure of particles described by form factors.

Form factors hide our ignorance of how the composite particle is constructed.

Interpretation of Form Factors

In non-relativistic limit, form factors are Fourier transforms of distributions:

$$G_E(\vec{q}) = \int \rho_{ch}(r) \exp(i\vec{q} \cdot \vec{r}) d^3r$$

Spin ¹/₂ particles have two elastic electromagnetic form factors:

G_E: electric form factor

 G_M : magnetic form factor

OR

F₁: Dirac form factor

 F_2 : Pauli form factor

$$G_E = F_1 - \tau F_2$$
 and $G_M = F_1 + F_2$

pQCD

- At low Q², forced to use effective theories.
- At high Q², use pQCD, which relies on quark helicity conservation.
- pQCD predicts asymptotic behavior for F₁ and F₂ following "counting rules."

 For elastic scattering in one photon exchange, quarks must exchange two gluons to distribute momentum to remain a nucleon

$$- F_1 \sim 1/Q^4$$

• F₂ requires an additional spin flip:

$$-F_2 \sim F_1/Q^2 \sim 1/Q^6$$

Expect in pQCD regime:

$$-Q^2 F_2/F_1 \sim \text{constant}$$

- or
$$G_F/G_M \sim \text{constant}$$

Seeds of Doubt ...

Interpretation of form factors as distributions requires:

- non-relativisitic limit,
 - data exists well into the relativistic region.
- or, if relativistic, there is no energy transferred (Breit frame)
 - a "physical" property for an unphysical reference frame?
- To think that the form factors are intimately connected to charge and magnetic distributions is simplistic and may lead to physical misinterpretation of the experimental results.

Dipole Form Factor

 G_{Ep} , G_{Mp} and G_{Mn} roughly follow the Dipole Form Factor.

$$G_D \equiv \left(1 + Q^2 / 0.71\right)^{-2}$$

The 0.71 is determined from a fit to the world's data.

An Exponential distribution has dipole form factor:

For Example:

$$G_{Mn}\cong \mu_n G_D$$

"World" Data up to 1997

G_{Mn} Results

Two Modern Methods:

1) Ratio of Cross sections measure $\frac{\sigma(D(e,e'n))}{\sigma(D(e,e'p))}$

Difficulty is absolute neutron detection efficiency

2) Beam-Target Asymmetries

$$A \square \frac{G_{Mn}^2}{1 + aG_{Mn}^2}$$

where $aG_{Mn}^2 \square 1$ Difficulty is nuclear corrections

G_{Mn} Future

Hall B has taken data using ratio of cross sections method: a talk on this experiment will be presented in this session.

Error bars are for uniform bins in Q^2 . Could increase bin size to reduce errors at large Q^2 .

G_{En} Results

Two Modern Methods:

1) Polarization Observables

$$\vec{D}(\vec{e}, e'n) p$$

$$\vec{3} \vec{H} e(\vec{e}, e'n) pp$$

$$D(\vec{e}, e'\vec{n}) p$$

2) Extraction from deuteron quadrupole form factor F_{c2} .

G_{En} Future

One experiment (MAMI) is completed and in analysis

Polarization measurements planned in:

- Hall A: polarized ³He up to Q²=3.4
- BLAST: precision measurements up to $Q^2=0.9$

G_{Ep} Results

Recoil Polarimetry

Measure ratio of polarization transferred to proton

$$\frac{G_{Ep}}{G_{Mp}} = -\frac{P_T}{P_L} \frac{(E+E')}{2m} \tan \frac{\theta_e}{2}$$

G_{Ep} Future

- Super Rosenbluth separation experiment is completed and in analysis.
- Another recoil polarimetry experiment at high Q² in Hall C.
- Precision polarized target experiment with BLAST.
- Rosenbluth measurement from data taken in Hall C of JLab.

Talks on each of these experiments will be presented today.

Physics Models

• pQCD - high Q²: Q² dependence

$$-G_M = F_1 + F_2$$
, $G_E = F_1 - \tau F_2$; $F_1 \sim Q^{-4}$, $F_2 \sim Q^{-6}$.

- Hybrids combine Vector Meson Dominance at low Q² and pQCD at high Q².
- Lattice QCD Calculations.
- Relativistic Quark Models vary on:
 - address relativity
 - dynamics

Models

QF_2/F_1

- Recall from pQCD expect $F_2/F_1 \sim 1/Q^2$
- Explanations:
 - OAM breaks helicity conservation (Ralston).
 - Higher twist contributions lead to log terms in F_2/F_1 (Brodsky).
 - Need OAM for spin-flip of massless quark which leads to log terms in F₂/F₁ (Belitsky).
 - Relativistic model leads to terms in lower spinor components (eqv. To OAM) (Miller).

Rosenbluth vs. Polarimetry

What explains the difference between these two experimental results?

- Rosenbluth Separation
 - Data shown to be consistent
 - Very difficult measurements in high Q²
 - Leading explanation: 2γ exchange which is ε dependent.
 - Shown to explain half the difference when include elastic contributions only.

- Polarimetry:
 - probably less susceptible to radiation issues since directly measure G_F/G_M .
 - Experimental technique is robust.

WARNING: Be careful mixing cross section and polarimetry results because they may be measuring different quantities.

Much of second part of this symposium is devoted to this issue.

Strangeness

EM current

$$\langle N|J_{\mu}|N\rangle = \bar{U}\left[\gamma_{\mu}F_{1} + i\sigma_{\mu\nu}q^{\nu}\frac{F_{2}}{2M}\right]U$$

Neutral current

$$\langle N | J_{\mu}^{NC} | N \rangle = \bar{U} \left[\gamma_{\mu} F_{1}^{Z} + i \sigma_{\mu\nu} q^{\nu} \frac{F_{2}^{Z}}{2M} + \gamma_{\mu} \gamma_{5} G_{A}^{Z} \right] U$$

• We can define a $G_{E,M}^{Z}$ analogous to $G_{E,M}^{p,n}$. Assuming isospin invariance, we can define strange form factors

$$G_{E,M}^{s} = (1 - 4\sin^{2}\theta_{W})G_{E,M}^{p} - G_{E,M}^{n} - G_{E,M}^{Z}$$

Strange Experiments

Consider PV e-p scattering, the asymmetry is

$$A_{PV} \square \varepsilon G_E^Z G_E^p + \tau G_M^Z G_M^p - \left(1 - 4\sin^2\theta_W\right) f(\tau, \varepsilon) G_A^e G_M^p$$

- Need three different measurements to separate G²'s, and must consider different targets, radiative corrections, ...
 - SAMPLE I,II, III: H, D at backward angles for $Q^2 = 0.1$, 0.038
 - HAPPEX I,II,III: H, 4 He at forward angles for $Q^{2} = 0.48$, 0.10
 - PVA4: H at forward angles for $Q^2 = 0.23$, 0.10
 - G_0 : H,D at forward and backward angles for $Q^2 = 0.1-1.0$
 - Each of these takes a different experimental approach

Summary

- Tremendous advance in experimental results in last several years for EM form factors.
 - Convergence in G_{En} and G_{Mn}
 - Models doing a respectable job
- G_{Ep}/G_{Mp} controversy continues
 - -2γ radiative corrections?
 - Implications for "delicate" Rosenbluth separations?
 - importance of orbital angular momentum in relativistic models
- Extremely healthy experimental and theoretical progress in neutral current results.
- In a few more years, we will have more data to continue to whet our appetites.

Asymptotic Dependence

pQCD predicts the asymptotic dependence of F_1 and F_2

- 1/Q² per gluon line
- 1/Q² per helicity flip

two gluon exchange,

•
$$F_2 \sim 1/Q^6$$

- two gluon exchange
- helicity flip

as
$$Q^2 \rightarrow \infty \Rightarrow$$

- G_F and $G_M \sim 1/Q^4$
- $G_E/G_M \sim 1$

G_{Ep} Analysis

- Brash *et al.* reanalyzed cross section data to extract G_{Mp} assuming G_{Ep}/G_{Mp} fall-off.
 - New parameterization with slightly larger G_{Mp}
 - $-G_{MD}$ results more consistent than published data

- J. Arrington examined cross section experiments
 - no one experiment has significant impact on result.
 - G_{Mp} results more consistent when assume constant G_{Ep}/G_{Mp} .
 - normalization errors cannot cross section result.
 - Cross section measurements are consistent with each other.